• Bokmål
  • English

Sitemap

SAMBA

SAMBA

Statistical Analysis, Pattern Recognition and Image Analysis - SAMBA

The SAMBA department has comprehensive theoretical and practical knowledge in the fields of statistics, pattern recognition and image analysis. We are one of Europe's largest and most competent groups within applied statistics and statistical-matematical modelling. We cover a broad spectrum of methods and are a world leader in some of these areas. The appropriate choice of method for the various problems is thus one of our strengths. Many calculations involve uncertainty and the accurate calculation of this parameter is an important speciality.

Research areas


Last 5 scientific articles

    Metsämäki, Sari; Pulliainen, Jouni; Salminen, Miia; Luojus, Kari; Wiesmann, Andreas; Solberg, Rune; Böttcher, Kristin; Hiltunen, Mwaba; Ripper, Elisabeth. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment (ISSN 0034-4257). 156 pp 96-108. doi: http://dx.doi.org/10.1016/j.rse.2014.09.018. 2015.

    Feldmann, Kira; Scheuerer, Michael; Thorarinsdottir, Thordis Linda. Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression. Monthly Weather Review (ISSN 0027-0644). doi: 10.1175/MWR-D-14-00210.1. 2015.

    Thorarinsdottir, Thordis Linda; Scheuerer, Michael; Heinz, Christopher. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. Journal of Computational And Graphical Statistics (ISSN 1061-8600). doi: 10.1080/10618600.2014.977447. 2015.

    Dyrrdal, Anita Verpe; Lenkoski, Alex; Thorarinsdottir, Thordis Linda; Stordal, Frode. Bayesian hierarchical modeling of extreme hourly precipitation in Norway. Environmetrics (ISSN 1180-4009). doi: 10.1002/env.2301. 2015.

    Hobæk Haff, Ingrid; Segers, Johan. Nonparametric estimation of pair-copula constructions with the empirical pair-copula. Computational Statistics & Data Analysis (ISSN 0167-9473). doi: 10.1016/j.csda.2014.10.020. 2014.

Publications in 2015, 2014, 2013, 2012, 2011, earlier years
Postal address:
Norsk Regnesentral/
Norwegian Computing Center
P.O. Box 114 Blindern
NO-0314 Oslo
Norway
Visit address:
Norsk Regnesentral
Gaustadalleen 23a
Kristen Nygaards hus
NO-0373 Oslo.
Phone:
(+47) 22 85 25 00
Address How to get to NR
Social media Share on social media
Postal address: Norsk Regnesentral/Norwegian Computing Center, P.O. Box 114 Blindern, NO-0314 Oslo, Norway
Visit address: Norsk Regnesentral, Gaustadalleen 23a, Kristen Nygaards hus, NO-0373 Oslo.
Phone: (+47) 22 85 25 00
AddressHow to get to NR