• Bokmål
  • English

Sitemap

Publications by department

Publications by department

Department: SAMBA
Period: 2019 - 2019

    Academic journal articles

    2019

    Aas, Kjersti; Rognebakke, Hanne Therese Wist. The evolution of a mobile payment solution network. Network Science (ISSN 2050-1242). 7(3) pp 422-437. doi: 10.1017/nws.2019.5. 2019.

    Basse-O'Connor, Andreas; Heinrich, Claudio Constantin; Podolskij, Mark. On limit theory for functionals of stationary increments Lévy driven moving averages. Electronic Journal of Probability (ISSN 1083-6489). 24(79) pp 1-42. doi: 10.1214/19-EJP336. 2019.

    Bianchi, Filippo Maria; Livi, Lorenzo; Mikalsen, Karl Øyvind; Kampffmeyer, Michael C.; Jenssen, Robert. Learning representations of multivariate time series with missing data. Pattern Recognition (ISSN 0031-3203). 96:106973 pp 1-11. doi: 10.1016/j.patcog.2019.106973. 2019.

    Fredricson Marquez, Jonatan; Lee, Aline Magdalena; Aanes, Sondre; Engen, Steinar; Herfindal, Ivar; Salthaug, Are; Sæther, Bernt-Erik. Spatial scaling of population synchrony in marine fish depends on their life history. Ecology Letters (ISSN 1461-023X). 22(11) pp 1787-1796. doi: 10.1111/ele.13360. 2019.

    Gilbert, Andrew David; Holden, Marit; Eikvil, Line; Aase, Svein Arne; Samset, Eigil; Mcleod, Kristin. Automated Left Ventricle Dimension Measurement in 2D Cardiac Ultrasound via an Anatomically Meaningful CNN Approach. Lecture Notes in Computer Science (LNCS) (ISSN 0302-9743). 11798 LNCS pp 29-37. doi: 10.1007/978-3-030-32875-7_4. 2019.

    Heinrich, Claudio Constantin; Pakkanen, Mikko S; Veraart, Almut E.D.. Hybrid simulation scheme for volatility modulated moving average fields. Mathematics and Computers in Simulation (ISSN 0378-4754). doi: 10.1016/j.matcom.2019.04.006. 2019.

    Kampffmeyer, Michael C.; Løkse, Sigurd; Bianchi, Filippo Maria; Livi, Lorenzo; Salberg, Arnt Børre; Jenssen, Robert. Deep divergence-based approach to clustering. Neural Networks (ISSN 0893-6080). 113 pp 91-101. doi: 10.1016/j.neunet.2019.01.015. 2019.

    Kourtellos, Andros; Lenkoski, Alex; Petrou, Kyriakos. Measuring the strength of the theories of government size. Empirical Economics (ISSN 0377-7332). pp 1-38. doi: 10.1007/s00181-019-01718-0. 2019.

    Melvær, Giil Lasse; Solvang, Stein-Erik Hafstad; Giil, Malin Melvaer; Hellton, Kristoffer Herland; Skogseth, Ragnhild Eide; Vik-Mo, Audun Osland; Hortobágyi, Tibor; Aarsland, Dag; Nordrehaug, Jan Erik. Serum Potassium Is Associated with Cognitive Decline in Patients with Lewy Body Dementia. Journal of Alzheimer's Disease (ISSN 1387-2877). 68(1) pp 239-253. doi: 10.3233/JAD-181131. 2019.

    Reksten, Jarle Hamar; Salberg, Arnt Børre; Solberg, Rune. Flood detection in Norway based on Sentinel-1 SAR imagery. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (ISSN 1682-1750). XLII-3/W8 pp 349-355. doi: 10.5194/isprs-archives-XLII-3-W8-349-2019. 2019.

    Revhaug, Cecilie; Zasada, Magdalena; Rognlien, Anne Gro Wesenberg; Günther, Clara-Cecilie; Grabowska, Agnieszka; Książek, Teofila; Madetko-Talowska, Anna; Szewczyk, Katarzyna; Bik-Multanowski, Miroslaw; Kwinta, Przemko; Pietrzyk, Jacek Józef; Baumbusch, Lars Oliver; Saugstad, Ola Didrik. Pulmonary vascular disease is evident in gene regulation of experimental bronchopulmonary dysplasia. Journal of Maternal-Fetal & Neonatal Medicine (ISSN 1476-7058). doi: 10.1080/14767058.2018.1541081. 2019.

    Revhaug, Cecilie; Bik-Multanowski, Miroslaw; Zasada, Magdalena; Rognlien, Anne Gro Wesenberg; Günther, Clara-Cecilie; Ksiazek, Teofila; Madetko-Talowska, Anna; Szewczyk, Katarzyna; Grabowska, Agnieszka; Kwinta, Przemko; Pietrzyk, Jacek Jozef; Baumbusch, Lars Oliver; Saugstad, Ola Didrik. Immune System Regulation Affected by a Murine Experimental Model of Bronchopulmonary Dysplasia: Genomic and Epigenetic Findings. Neonatology (ISSN 1661-7800). 116 pp 269-277. doi: 10.1159/000501461. 2019.

    Schuhen, Nina; Thorarinsdottir, Thordis Linda; Lenkoski, Alex. Rapid adjustment and post-processing of temperature forecast trajectories. Quarterly Journal of the Royal Meteorological Society (ISSN 0035-9009). doi: 10.1002/qj.3718. 2019.

    Steel, E. Ashley; Liermann, Martin; Guttorp, Peter. Beyond Calculations: A Course in Statistical Thinking. American Statistician (ISSN 0003-1305). 73(1) pp 392-401. doi: 10.1080/00031305.2018.1505657. 2019.

    Steinbakk, Gunnhildur Högnadóttir; Aarsnes, Lars Holterud; Aldrin, Magne Tommy; Astrup, Ole Christian; Haug, Ola; Storhaug, Gaute; Vanem, Erik. Statistical Approximation to Synthetic Midship Hull Girder Stress Response. Journal of Ship Research (ISSN 0022-4502). doi: 10.5957/JOSR.02190008. 2019.

    Trier, Øivind Due; Cowley, David C.; Waldeland, Anders Ueland. Using deep neural networks on airborne laser scanning data: results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeological Prospection (ISSN 1075-2196). 26(2) pp 165-175. doi: 10.1002/arp.1731. 2019.

    Yuan, Qifen; Thorarinsdottir, Thordis Linda; Beldring, Stein; Wong, Wai Kwok; Huang, Shaochun; Xu, Chong-Yu. New approach for bias correction and stochastic downscaling of future projections for daily mean temperatures to a high-resolution grid. Journal of Applied Meteorology and Climatology (ISSN 1558-8424). 58(12) pp 2617-2632. doi: 10.1175/JAMC-D-19-0086.1. 2019.

    Academic literature reviews

    2019

    Malde, Ketil; Handegard, Nils Olav; Eikvil, Line; Salberg, Arnt Børre. Machine intelligence and the data-driven future of marine science. ICES Journal of Marine Science (ISSN 1054-3139). doi: 10.1093/icesjms/fsz057. 2019.

    Academic chapters

    2019

    Hubin, Aliaksandr. An adaptive simulated annealing EM algorithm for inference on non-homogeneous hidden Markov models. In: ACM International Conference Proceeding Series (ICPS): AIIPCC '19: Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing. (ISBN 978-1-4503-7633-4). pp 1-9. doi: 10.1145/3371425.3371641. 2019.

    Hubin, Aliaksandr; Storvik, Geir Olve; Grini, Paul Eivind; Butenko, Melinka Alonso. Bayesian binomial regression model with a latent Gaussian field for analysis of epigenetic data. In: Proceedings of Computer Data Analysis and Modeling: Stochastics and Data Science 2019. Belarusian State University Press. (ISBN 978-985-566-811-5). pp 167-171. 2019. Full-text 

    Jang, Youngsoo; Lee, Jongmin; Park, Jaeyoung; Lee, Kyeng-Hun; Lison, Pierre; Kee-Eung, Kim. PyOpenDial: A Python-based Domain-Independent Toolkit for Developing Spoken Dialogue Systems with Probabilistic Rules. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP 2019), System Demonstrations. (ISBN 9781950737925). pp 187-192. doi: 10.18653/v1/D19-3032. 2019.

    Liu, Qinghui; Kampffmeyer, Michael; Jenssen, Robert; Salberg, Arnt Børre. Road Mapping in Lidar Images Using a Joint-Task Dense Dilated Convolutions Merging Network. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium Proceedings. (ISBN 978-1-5386-9154-0). pp 5041-5044. doi: 10.1109/IGARSS.2019.8900082. 2019.

    Academic lectures

    2019

    Aas, Kjersti; Czado, Claudia. Vine copulas in finance & insurance. Konferanse, IME conference 2019; Munich, 10.07.2019.

    Aas, Kjersti. Explaining predictions from machine learning methods when features are dependent. Workshop, Vine Copulas and their Applications; Munich, 08.07.2019 - 09.07.2019.

    Brautaset, Olav; Handegard, Nils Olav. Automated acoustic data processing with deep learning. Workshop, Norway-US Workshop on Machine Learning to Improve Science for the Sustainability of Living Ocean Resources; Bergen, 23.05.2019 - 25.05.2019.

    Brautaset, Olav. Applying deep learning to non-standard image data - a case study on marine acoustics. Workshop, Northern Lights Deep Learning Workshop 2019; Tromsø, 09.01.2019 - 10.01.2019.

    Günther, Clara-Cecilie; Haugen, Marion; Neef, Linda Reiersølmoen. Gir klikkstrømdata bedre innsikt i besøkendes behov? Konferanse, Det 20. norske statistikermøtet; Sola, 18.06.2019 - 20.06.2019.

    Heinrich, Claudio Constantin. Forecast validation for earthquakes and other point processes. Seminar, UiO seminar series in Statistics and Data Science; Oslo, 29.10.2019.

    Heinrich, Claudio Constantin. How to validate point process predictions or can tests for calibration be proper? Workshop, RexVerim 2019; Reading, 25.04.2019 - 26.04.2019.

    Heinrich, Claudio Constantin. Statistical post-processing of seasonal weather forecasts. Konferanse, 14th International Meeting on Statistical Climatology; Toulouse, 24.06.2019 - 28.06.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve. Combining Model and Parameter Uncertainty in Bayesian Neural Networks. Konferanse, Nordic Probabilistic AI School; Trondheim, 03.06.2019 - 07.06.2019.

    Huseby, Ragnar Bang; Aldrin, Magne Tommy. Recent developments in statistical modelling of disease dispersal in marine fish aquaculture. Konferanse, Det 20. norske statistikermøtet; Sola Strand Hotel, 17.06.2019 - 20.06.2019.

    Jensen, Britt Bang; Kristoffersen, Anja Bråthen; Aldrin, Magne Tommy; Qviller, Lars. A web-based app for simulating spread of PD. Konferanse, 19th International conference on diseases of fish and shellfish; Porto, 09.09.2019 - 12.09.2019.

    Jullum, Martin; Aas, Kjersti; Løland, Anders. Opening the black box -- individual prediction explanation. Konferanse, Big Insight Day 2020; Oslo, 14.11.2019.

    Jullum, Martin; Aas, Kjersti; Løland, Anders. How to open the black box -- Individual prediction explanation. Konferanse, Det 20. norske statistikermøtet; Stavanger, 18.06.2019 - 20.06.2019.

    Lison, Pierre. Data-driven models of reputation for cybersecurity. Seminar, Invitert foredrag, seminar om trusseletterretning med AI; Oslo, 05.02.2019.

    Lison, Pierre. Dialogue Modelling: Small data, Big data. Konferanse, Invitert foredrag; Stockholm, 10.09.2019.

    Lison, Pierre. Modélisation du dialogue: contrôle du dialogue et corpus multilingues. Seminar, Invitert foredrag; Aix-en-Provence, 22.05.2019.

    Liu, Qinghui; Kampffmeyer, Michael C.; Jenssen, Robert; Salberg, Arnt Børre. Road Mapping in Lidar Images Using a Joint-Task Dense Dilated Convolutions Merging Network. Konferanse, IGARSS 2019; Yokohama, 27.07.2019 - 02.08.2019.

    Liu, Qinghui; Kampffmeyer, Michael C.; Jenssen, Robert; Salberg, Arnt Børre. DDCM Network for Semantic Mapping of Remote Sensing Images. Workshop, NLDL2019: Northern Lights Deep Learning Workshop; Tromsø, 08.01.2019 - 10.01.2019.

    Rognebakke, Hanne Therese Wist; Thorarinsdottir, Thordis Linda. Statistical space-time projections of wave heights in the North Atlantic. Konferanse, European Meeting of Statisticians; Palermo, 22.07.2019 - 26.07.2019.

    Salberg, Arnt Børre; Eikvil, Line; Malde, Ketil; Handegard, Nils Olav. The COGMAR project. Workshop, Norway-US Workshop on Machine Learning to Improve Science for the Sustainability of Living Ocean Resources; Bergen, 23.04.2019 - 25.04.2019.

    Steinbakk, Gunnhildur Högnadóttir; Lenkoski, Alex; Løland, Anders; Huseby, Ragnar Bang. Using published bid/ask curves to error dress spot electricity prices. Konferanse, Det 20. norske statistikermøtet, 18.06.2019 - 20.06.2019.

    Steinbakk, Gunnhildur Högnadóttir; Aldrin, Magne Tommy; Haug, Ola. Virtual indicator sensor for structural condition monitoring. Seminar, Big Insight Seminar, 15.01.2019.

    Storvik, Geir Olve; Hubin, Aliaksandr. Combining model and parameter uncertainty in Bayesian neural networks. Konferanse, CMStatistics 2019; London, 14.12.2019 - 16.12.2019.

    Stryhn, Henrik; Qviller, Lars; Jansen, Peder A; Kristoffersen, Anja Bråthen; Aldrin, Magne Tommy. Evaluating the impact of zoning in Norwegian aquaculture on sea lice populations at salmon production sites. Konferanse, 15th International Symposium of Veterinary Epidemiology and Economics; Chiang Mai, 12.11.2019 - 16.11.2019.

    Thorarinsdottir, Thordis Linda; Engeland, Kolbjørn; Kobierska, Florian. The effects of uncertainty on design flood estimation. Konferanse, EVA 2019, 01.07.2019 - 05.07.2019.

    Trier, Øivind Due. Automated detection of grave mounds, deer hunting systems and charcoal burning platforms from airborne lidar data using faster-RCNN. Konferanse, Machine Learning in Archaeology Conference; Roma, 07.11.2019 - 08.11.2019.

    Trier, Øivind Due. Automated mapping of cultural heritage in Norway from airborne lidar data using faster-RCNN. Konferanse, Nordic Remote Sensing Conference; Århus, 17.09.2019 - 19.09.2019.

    Trier, Øivind Due. Detection of cultural heritage in airborne laser scanning data using Faster RCNN. Results on Norwegian data. Konferanse, International Conference on Cultural Heritage and New Technologies; Wien, 04.11.2019 - 06.11.2019.

    Scientific lectures

    2019

    Aas, Kjersti. Metodisk seminar kredittrisikomodellering. Seminar, Seminar; Stavanger, 12.11.2019.

    Aas, Kjersti. Norsk Regnesentral - forskning som synes og brukes. Årsmøte, Foredrag for Rotary Moelv, 23.05.2019.

    Brautaset, Olav. Automated acoustic data processing with deep learning. Seminar, AI lounge; Oslo, 28.05.2019.

    Eikvil, Line; Holden, Marit. Maskinlæring i mammografiprogrammet. Konferanse, Fagkonferansen i mammografiprogrammet, 28.03.2019 - 29.03.2019.

    Haug, Ola; Steinbakk, Gunnhildur Högnadóttir; Salberg, Arnt-Børre; Aldrin, Magne. Metodikk for ÅDT-belegging - forslag til løsning. Seminar, Dialogkonferanse knyttet til anbud rundt ÅDT-belegging; Statens Vegvesen Vegdirektoratet, 13.09.2019.

    Hubin, Aliaksandr. An adaptive simulated annealing EM algorithm for inference on non-homogeneous hidden Markov models. Konferanse, AIIPCC '19; Sanya, 18.12.2019 - 21.12.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve; Grini, Paul Eivind; Butenko, Melinka Alonso. Bayesian binomial regression model with a latent Gaussian field for analysis of epigenetic data. Konferanse, CDAM 2019; Minsk, 18.09.2019 - 22.09.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve. Combining Model and Parameter Uncertainty in Bayesian Neural Networks. Konferanse, CDAM 2019; Minsk, 18.09.2019 - 22.09.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve. Combining Model and Parameter Uncertainty in Bayesian Neural Networks. Konferanse, CRONOSMDA2019; Limassol, 14.04.2019 - 16.04.2109.

    Jullum, Martin; Bolstad, Lars Erik. Mindre rutinearbeid med maskinlæring -- Automatisk deteksjon av hvitvasking. Konferanse, Make Data Smart Again; Oslo, 09.05.2019.

    Lison, Pierre. Modellering av omdømme i cybersikkerhet med nevralske nettverk. Årsmøte, Invitert foredrag; Oslo, 12.06.2019.

    Løland, Anders. Trenger vi et (eller flere) algoritmetilsyn? Konferanse, AI-konferansen 2019; Oslo, 09.10.2019.

    Løland, Anders. To historier: Dynamisk maskinlæringsprising av Airbnb-leiligheter + Hvordan kan vi forklare hva maskinlæringen legger vekt på? Konferanse, NAV-konferansen 2019; Sentralen, Oslo, 27.11.2019.

    Løland, Anders. Innsyn i algoritmene. Konferanse, Sikkerhetsfestivalen; Lillehammer, 28.08.2019.

    Løland, Anders. Research perspectives on Artificial Intelligence, transparency, privacy & law. Seminar, USITs sommerfest; Oslo, 20.06.2019.

    Løland, Anders. JUS5671: NR, Big Insight and two questions. Gjesteforelesning, JUS5671 – Legal Technology: Artificial Intelligence and Law; Oslo, 01.03.2019.

    Løland, Anders. AI, AI; trenger vi et (eller flere) algoritmetilsyn? Seminar, Ansvarlig AI; Oslo, 04.09.2019.

    Løland, Anders. Data management – or what I did not learn @UiO. Gjesteforelesning, STK-MAT2011; Universitetet i Oslo, 30.01.2019.

    Løland, Anders. Er urettferdige algoritmer uungåelig? Konferanse, Make Data Smart Again 2019; Oslo, 09.05.2019.

    Løland, Anders. Explaining and opening the black box – methods and research challenges. Gjesteforelesning, XAI Understanding Deep Neural Networks & AI; Forskningsparken, Oslo, 24.09.2019.

    Løland, Anders. Research perspectives on Artificial Intelligence, transparency, privacy & law. Konferanse, NeIC 2019 - Nordic Infrastructure for Open Science; København, 14.05.2019 - 16.05.2019.

    Salberg, Arnt Børre; Eikvil, Line. The COGMAR project: Ubiquitous cognitive computer vision for marine services. Annet, Community of Practice Data Science & AI i Capgemini Norge; Oslo, 28.04.2019.

    Steinbakk, Gunnhildur Högnadóttir; Aarsnes, Lars Holterud; Aldrin, Magne Tommy; Astrup, Ole Christian; Haug, Ola; Storhaug, Gaute; Vanem, Erik. Statistical approximation to synthetic mid-ship hull girder stress response. Konferanse, SNAME Maritime Convention (SMC) 2019; Tacoma, WA, 30.10.2019 - 02.11.2019.

    Teigland, André. Hva er egentlig Maskinlæring og Kunstig intelligens? Konferanse, Nye Muligheter - Maskinlæring og Kunstig Intelligens; Oslo, 07.02.2019.

    Teigland, André. Maskinlæring og kunstig intelligens - en avmystifisering med fokus på muligheter og begrensninger. Konferanse, Energiberedskap 2019; Drammen, 23.05.2019.

    Teigland, André; Løland, Anders. Artificial Intelligence (AI) - verktøyet som vil transformere verden. Seminar, Innovasjonsuken OPP; Bergen, 16.09.2019.

    Trier, Øivind Due. Klassifikasjon og deteksjon ved bruk av kunstig intelligens. Seminar, Geodesi- og hydrografidagene 2019; Sundvollen, Hole, Buskerud, 27.11.2019 - 28.11.2019.

    Wahl, Jens Christian. Parameter estimation of multivariate factor stochastic volatility models. Seminar, Aktuarfokus; Oslo, 14.02.2019.

    Wahl, Jens Christian. Hvordan bruke statistisk modellering til å forutsi hvilke bedrifter som går konkurs. Gjesteforelesning, Realfagsdagene 2019; Trondheim, 15.03.2019.

    Posters at scientific conferences

    2019

    Heinrich, Claudio Constantin. STATISTICAL POSTPROCESSING OF SEASONAL WEATHER FORECASTS. 2019 Joint Statistical Meetings; Denver, 27.07.2019 - 01.08.2019.

    Liu, Qinghui; Kampffmeyer, Michael C.; Jenssen, Robert; Salberg, Arnt Børre. Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images. JURSE2019 -Joint Urban Remote Sensing Event; Vannes, 22.05.2019 - 24.05.2019.

    Olsen, Karina Standahl; Holden, Marit; Talabard, Jean-Christophe; Busund, Lill-Tove Rasmussen; Lund, Eiliv; Holden, Lars. Post-diagnostic blood gene expression profiles in breast cancer - NOWAC Post-genome Cohort. NOFE conference; Oslo, 13.11.2019 - 14.11.2019.

    Thorarinsdottir, Thordis Linda; Stefanakos, Christos; Vanem, Erik; Rognebakke, Hanne Therese Wist; Hammer, Hugo Lewi; Øigård, Tor Arne. HDwave: Statistical space-time projections of wave heights. 2nd International Workshop on Waves, Storm Surges and Coastal Hazards, 10.11.2019 - 15.11.2019.

    Reports

    2019

    Aas, Kjersti; Neef, Linda Reiersølmoen. Modell for Solvens II - Versjon X: Teknisk rapport for balansemodul. Norsk Regnesentral, . NR-notat SAMBA/36/19. pp 79. 2019.

    Aas, Kjersti; Neef, Linda Reiersølmoen. Totalrisikomodell for DNB Versjon 10: Brukermanual. Norsk Regnesentral, . NR-notat SAMBA/25/19. pp 62. 2019.

    Aas, Kjersti; Wahl, Jens Christian. Model for determining the Norwegian deposit guarantee fund liabilities: Technical report. Norsk Regnesentral, . NR-notat SAMBA/16/19. pp 29. 2019.

    Aas, Kjersti; Neef, Linda Reiersølmoen. Modell for Solvens II - Versjon X: Modul for prising av rentegaranti. Norsk Regnesentral, . NR-notat SAMBA/40/19. pp 51. 2019.

    Aas, Kjersti; Neef, Linda Reiersølmoen. ALM-modell for Fremtind - Versjon 1: Estimeringsmodulen. Norsk Regnesentral, . NR-notat SAMBA/34/19. pp 21. 2019.

    Aas, Kjersti. Vurdering av metoden for dobling av relative posisjoner som Halvor Hoddevik presenterte i Lagmannsretten. Norsk Regnesentral, . NR-notat SAMBA/43/19. pp 12. 2019.

    Aas, Kjersti; Neef, Linda Reiersølmoen. ALM-modell for Fremtind - Versjon 1: Teknisk rapport for balansemodulen. Norsk Regnesentral, . NR-notat SAMBA/33/19. pp 47. 2019.

    Aas, Kjersti. DNB Total Risk Model Version 9: Technical report. Norsk Regnesentral, . NR-notat SAMBA/35/19. pp 71. 2019.

    Aas, Kjersti. Økonomisk scenariogenerator-alternativ metodikk. Norsk Regnesentral, . NR-notat SAMBA/47/19. pp 18. 2019.

    Eikvil, Line; Holden, Marit. Deep learning for ultrasound images - next steps. Norsk Regnesentral, . NR-notat SAMBA/48/19. pp 55. 2019.

    Haug, Ola; Steinbakk, Gunnhildur Högnadóttir; Salberg, Arnt Børre; Aldrin, Magne. Metodikk for ÅDT-belegging - statistisk modell og datakilder. Norsk Regnesentral, . NR-notat SAMBA/26/19. pp 24. 2019.

    Heinrich, Claudio Constantin; Schneider, Max; Guttorp, Peter; Thorarinsdottir, Thordis Linda. Validation of point process forecasts. Norsk Regnesentral, . NR-notat SAMBA/20/19. pp 28. 2019. Full-text 

    Holden, Marit; Holden, Lars. Parity and breast cancer Gene expression in blood, normal and tumor tissue. Norsk Regnesentral, . NR-notat SAMBA/24/19. pp 30. 2019.

    Hubin, Aliaksandr; Aas, Kjersti. FinAI: Scalable techniques to stock price time series modelling. Norsk Regnesentral, . NR-notat SAMBA/20/19. pp 30. 2019.

    Huseby, Ragnar Bang; Løland, Anders; Redelmeier, Annabelle Alice; Aanes, Fredrik L; Øigård, Tor Arne. BalPrice -- Forecast of balancing prices. Norsk Regnesentral, . 2019.

    Lund, Eiliv; Holden, Marit; Holden, Lars. BLOBREC – a blood-based test for breast cancer Analyses of test properties in the years before and after diagnosis. Norsk Regnesentral, . NR-notat SAMBA/27/19. pp 17. 2019. Full-text 

    Løland, Anders; Aas, Kjersti. Differanseavkastning for DNB Norge og andre norske aksjefond – kommentarer og analyser. Norsk Regnesentral, . NR-notat SAMBA/05/19. pp 115. 2019.

    Murray, Sean Meling; Eikvil, Line; Salberg, Arnt Børre. Automatic interpretation of otoliths with deep learning - explaining predictions. Norsk Regnesentral, . NR-notat 19. pp 33. 2019.

    Neef, Linda Reiersølmoen; Aas, Kjersti. Modell for Solvens II - Versjon X: Teknisk rapport for passivamodul. Norsk Regnesentral, . NR-notat SAMBA/37/19. pp 268. 2019.

    Neef, Linda Reiersølmoen; Günther, Clara-Cecilie; Haugen, Marion. Analyser av data fra enkeltmannsforetak som har levert Næringsrapport skatt. Norsk Regnesentral, Oslo. NR-notat SAMBA/41/19. pp 67. 2019.

    Neef, Linda Reiersølmoen; Aas, Kjersti. ALM-modell for Fremtind - Versjon 1: Teknisk rapport for passivamodulen. Norsk Regnesentral, . NR-notat SAMBA/32/19. pp 63. 2019.

    Neef, Linda Reiersølmoen; Aas, Kjersti. Modell for Solvens II - Versjon X: Brukermanual. Norsk Regnesentral, . NR-notat SAMBA/38/19. pp 180. 2019.

    Neef, Linda Reiersølmoen; Aas, Kjersti. Modell for Solvens II - Versjon X: Estimeringsmodul. Norsk Regnesentral, . NR-notat SAMBA/39/19. pp 64. 2019.

    Ordonez, Alba; Eikvil, Line; Salberg, Arnt Børre. Visualization of deep neural networks applied to fish age prediction. Norsk Regnesentral, Oslo. NR-notat SAMBA/42/19. pp 36. 2019.

    Redelmeier, Annabelle Alice; Aas, Kjersti; Jullum, Martin; Løland, Anders. Shapley explanations using conditional inference trees. Norsk Regnesentral, . NR-notat SAMBA/18/19. pp 33. 2019.

    Redelmeier, Annabelle Alice. Predicting the sentiments of Gjensidige insurance customers. Norsk Regnesentral, . NR-notat SAMBA/51/19. pp 22. 2019.

    Steinbakk, Gunnhildur Högnadóttir. July 2018 – July 2019: Validation of property value estimates. Norsk Regnesentral, . NR-notat SAMBA/30/19. pp 30. 2019.

    Steinbakk, Gunnhildur Högnadóttir. July 2018 – July 2019: Validation of property value estimates Second home market. Norsk Regnesentral, . NR-notat SAMBA/31/19. pp 21. 2019.

    Steinbakk, Gunnhildur Högnadóttir. June 2018 – May 2019: Validation of property value estimates, Housing cooperative shares. Norsk Regnesentral, . NR-notat SAMBA/23/19. pp 16. 2019.

    Steinbakk, Gunnhildur Högnadóttir. June 2018 – May 2019: Validation of property value estimates Houses. Norsk Regnesentral, . NR-notat SAMBA/22/19. 2019.

    Trier, Øivind Due; Salberg, Arnt Børre. Kartlegging av naturinngrep. Foreløpig rapport. Norsk Regnesentral, Oslo. NR-notat SAMBA/46/19. pp 27. 2019.

    Trier, Øivind Due. Sen4Pol Phase 1. NDVI-based method for daily birch pollen prediction from Sentinel-3. Norsk Regnesentral, Oslo. NR-notat SAMBA/44/19. pp 80. 2019.

    Trier, Øivind Due. CultSearcher user guide. Version 1.0. Norsk Regnesentral, Oslo. NR-notat SAMBA/13/19. pp 28. 2019.

    Trier, Øivind Due. NGVEO project notes. Atmospheric correction of Sentinel-2 data. Norsk Regnesentral, Oslo. NR-notat SAMBA/04/19. pp 60. 2019.

    Trier, Øivind Due; Reksten, Jarle Hamar. Automated detection of cultural heritage in airborne lidar data. CultSearcher operationalisation. Norsk Regnesentral, Oslo. NR-notat SAMBA/50/19. pp 157. 2019.

    Tvete, Ingunn Fride; Natvig, Bent; Gåsemyr, Jørund Inge; Klemp, Marianne; Binde, Caroline Ditlev. Sammenligning av medikamenter for behandling av Parkinson pasienter. Norsk Regensentral, Oslo. pp 29. 2019.

    Vasaasen, Erik; Holden, Lars; Løland, Anders. Personopplysninger i forskningsprosjekter ved Norsk Regnesentral. Norsk Regnesentral, . NR-notat ADMIN/01/2019. pp 51. 2019.

    Wahl, Jens Christian; Sellereite, Nikolai; Aas, Kjersti. Predicting probability of default for SMEs using relational and transaction data. Norsk Regnesentral, . NR-notat SAMBA/07/19. pp 52. 2019.

    Wahl, Jens Christian; Aas, Kjersti. Simuleringsmodell for innskuddsforpliktelser: Brukermanual. Norsk Regnesentral, . NR-notat SAMBA/17/19. pp 27. 2019.

    Popular scientific lectures

    2019

    Hellton, Kristoffer Herland; Løland, Anders. Kurs i maskinlæring. Kurs; Utdanningsdirektoratet, Oslo, 07.03.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve. Combining Model and Parameter Uncertainty in Bayesian Neural Networks. Big Insight Lunch; Big insight, UiO, NR, Oslo, 24.04.2019.

    Hubin, Aliaksandr; Storvik, Geir Olve. Combining Model and Parameter Uncertainty in Bayesian Neural Networks. Data Science Major Minsk; Open Data Science (ODS.AI), Minsk, 30.11.2019.

    Løland, Anders. Ikke løgn og forbannet løgn. Kurs; Bergens Tidende, Bergen, 11.04.2019.

    Løland, Anders; Hellton, Kristoffer Herland. Maskinlæring på 1-2-3. Kurs; Norsk Regnesentral, Sentralen, Oslo, 15.10.2019.

    Løland, Anders. Kjøpe STORDATA fra Kina? Debatt om bruk av stordata i møte med etikk og personvern; Norsk Regnesentral, Kulturhuset, Oslo, 25.09.2019.

    Løland, Anders; Hellton, Kristoffer Herland. Alt du kan lære om statistisk modellering og maskinlæring på en dag. Kurs; Norsk Regnesentral, Oslo, 10.11.2019.

    Løland, Anders. Vitneforklaring vedrørende rapport om DNB Norge og andre norske aksjefond. 18-043087ASD-BORG/03; Borgarting lagmannsrett, 28.03.2019.

    Løland, Anders. Kunstig intelligens og maskinlæring – hvordan bruker man data riktig? DN Fintech 2019; Dagens Næringsliv, Oslo, 13.11.2019.

    Løland, Anders; Hellton, Kristoffer Herland. Alt du kan lære om statistisk modellering og maskinlæring på en dag. Kurs; Norsk Regnesentral, Oslo, 30.01.2019.

    Rognebakke, Hanne Therese Wist; Redelmeier, Annabelle Alice. Introduksjon til R – verktøy for statistisk analyse. Kurs; Norsk Regnesentral, Oslo, 11.04.2019.

    Rognebakke, Hanne Therese Wist; Redelmeier, Annabelle Alice. Introduksjon til R – verktøy for statistisk analyse. Kurs; Norsk Regnesentral, Oslo, 31.01.2019.

    Teigland, André. Kunstig intelligens - en avmystifisering. Forskerkafé; NITO / TEKNA, Porsgrunn, 18.09.2019.

    Waldeland, Anders U.. An Introduction to Machine Learning. FORCE Hackathon and symposium: Applied Machine Learning and Advanced Analytics with Oil and Gas Data; NDP, Stavanger, 20.09.2019.

    Feature articles

    2019

    Løland, Anders. Skjult diskriminering med algoritmer? Dagens næringsliv. pp 39. 09.01.2019.

    Løland, Anders. «Det er algoritmens feil» – greit? Dagens næringsliv. pp 35. 13.12.2019.

    Løland, Anders. Fem grunner til at vi ikke lykkes med kunstig intelligens (ennå). Dagens næringsliv. pp 31. 23.07.2019.

    Articles in business, trade and industry journals

    2019

    Tjøstheim, Dag Bjarne. Invited discussion of two papers on "Models as approximations", by A. Buja et al. Statistical Science (ISSN 0883-4237). 2019.

    Popular scientific articles

    2019

    Pilø, Lars Holger; Trier, Øivind Due; Salberg, Arnt Børre. Kunstig intelligens finner skjulte kulturminner. Aftenposten (morgenutg. : trykt utg.) (ISSN 0804-3116). pp 24-25. 17.12.2019.

    Reader opinion pieces

    2019

    Holden, Lars; Løland, Anders. Ingen kvikkfiks for statistikken. Forskningsetikk, 2019-06-27 , pp. 26

    Løland, Anders. Enkelte forskere går seg vill i frykten for datatørke. Forskning.no, 2019-02-14

    Løland, Anders. Vil vi ha robotlate dommere?. Aftenposten (morgenutg. : trykt utg.), 2019-11-05 , pp. 27

    Media contributions

    2019

    Løland, Anders; Sellereite, Nikolai. Tallknuserdom: 0,1 prosents sjanse for Rosenborg-gull. 2019. Aftenposten [Newspaper] 03.10.2019.

    Løland, Anders. Besøk i Dagbladets valgbod. 2019. db.no [Internet] 26.08.2019.

    Løland, Anders. Nekter å tro at maten er god. 2019. Bergensavisen [Newspaper] 31.01.2019.

    Løland, Anders. Om prognoser og meningsmålinger i Dagbladets valgbod. 2019. db.no [Internet] 06.09.2019.

    Sellereite, Nikolai. Her er tallene som får Ranheim-sjefen til å smile. 2019. aftenposten.no [Internet] 25.10.2019.

    Sellereite, Nikolai. Tallknusere: – 8,9 prosent sannsynlighet for at Sarpsborg 08 rykker direkte ned. 2019. https://www.f-b.no/ [Internet] 28.11.2019.

    Sellereite, Nikolai; Løland, Anders. Så stor er sjansen for opprykksjubel i Stjørdal: – Helt uvirkelig at de fortsatt er i toppen. 2019. bladet.no [Internet] 11.10.2019.

    Sellereite, Nikolai; Løland, Anders; Aldrin, Magne Tommy. Analysegiganter levner Norge nærmest null sjanse til VM-gull: – Jeg deler ikke det synet her. 2019. NRK [Internet] 08.06.2019.

    Sellereite, Nikolai; Løland, Anders. Tallknusernes dom: United blir nummer seks. 2019. TV2 [Internet] 06.04.2019.

    Sellereite, Nikolai. Tallknusernes nedslående dom: Så lite er Norges EM-håp i kvaliken. 2019. vg.no [Internet] 15.10.2019.

    Sellereite, Nikolai; Løland, Anders. Tallknusernes dom: Så stor er muligheten for at Start rykker direkte opp til Eliteserien. 2019. adressa.no [Internet] 10.10.2019.

    Sellereite, Nikolai. P1 ettermiddag fra NRK Innlandet 18.10.2019. 2019. radio.nrk.no [Radio] 18.10.2019.

    Sellereite, Nikolai; Løland, Anders. Datamaskin har spilt avslutningen 50.000 ganger - så store er sjansene for FFK-jubel. 2019. f-b.no [Internet] 10.10.2019.

    Teigland, André. AI - Keiserens kunstige klær? 2019. lørn.tech [Internet] 18.01.2019.

Postal address:
Norsk Regnesentral/
Norwegian Computing Center
P.O. Box 114 Blindern
NO-0314 Oslo
Norway
Visit address:
Norsk Regnesentral
Gaustadalleen 23a
Kristen Nygaards hus
NO-0373 Oslo.
Phone:
(+47) 22 85 25 00
Address How to get to NR
Social media Share on social media
Privacy policy Privacy policy
Postal address: Norsk Regnesentral/Norwegian Computing Center, P.O. Box 114 Blindern, NO-0314 Oslo, Norway
Visit address: Norsk Regnesentral, Gaustadalleen 23a, Kristen Nygaards hus, NO-0373 Oslo.
Phone: (+47) 22 85 25 00
AddressHow to get to NR