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Abstract. A stochastic model for a petroleum reservoir with L seismic subsurfaces
is presented. The seismic velocities within each layer is described by linear regression
models and Gaussian random fields. Seismic interpretation errors are modeled as
Gaussian random fields. Intercorrelations between all subsurfaces and all velocity
fields are taken into consideration. This simplifies the handling of deviating wells
and ensures consistent prediction and prediction variances for all L subsurfaces and
L velocity fields. Bayesian kriging is used for prediction of subsurfaces and velocity
fields.

In the limit corresponding to exact prior knowledge, the Bayesian method is equiv-
alent to cokriging with 2 covariables. In the limit corresponding to no prior knowl-
edge, the method is equivalent to a combination of universal kriging and cokriging
with 2. dependent regression models and 2L covariables.

1 Introduction

The large scale geometry of a petroleum reservoir is usually described by a set of
geological subsurfaces separating almost homogeneous layers. Available information
for the depth to the subsurfaces are precise depth observations in wells, and less
precise information from seismic travel times. The travel times are recordings of the
time used by a sonic pulse from the surface to a reflecting subsurface. The importance
of the seismic travel times are their lateral coverage. The travel times are usually
available on a fine-meshed grid which allows an almost continuous — but inexact
— description of the lateral depth trends. On the other hand, the almost exact
well measurements are available in just a few locations possibly several kilometers
apart. The challenge is therefore to combine the exact well measurements with the
general trends from the travel times. This requires the simple kinematic relation
between depth, the velocity of sound, and travel time: z = v - . In the next section,
spatial stochastic models for v and ¢ are established, and the resulting model for z is
considered. Using kriging techniques, predictions for the velocity field and the depth
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are available. The process of calculating the depth to a seismic reflector from the
measured travel times is known as depth conversion.

In most applications several seismic reflectors are observed above the reservoir
layers under study. The velocity of sound changes significantly at seismic reflectors.
Thus, a separate model for the velocity field in every layer should be used to obtain
the best results. The traditional approach to depth conversion is to predict the
thickness of each layer independently. This paper proposes a method which considers
all subsurfaces and velocity fields in one consistent model.

A general problem — at least in off-shore applications — is the very limited
number of wells. The lack of data must be compensated by prior information, so
Bayesian statistics is necessary. This ensures stable and reasonable results for any
number of well observations — including zero.

The paper is organized as follows: the next section describes the stochastic models,
Section 3 reviews Bayesian kriging and outlines how the current problem is organized
to fit into the linear kriging machinery. Section 4 gives an example which illustrates
the properties of the proposed method. Section 5 close the discussion by some final
remarks.

2 Stochastic model for depth conversion

The fine-meshed grids containing the travel times are regarded as continuous 2-
dimensional fields. The recorded travel times to subsurface [ is denoted #;(x), where
x € R? is a lateral reference. The average vertical velocity of sound within a layer
is called the interval velocity and is denoted v;(x). If both the travel times and the
interval velocities are exactly known, the depth to subsurface L, z1(x), is found as
the sum of the interval thicknesses, Az(x), above:

(1) zr(x) = ;AZz(X%

where Az/(x) = v(x)At)(x) = vi(x) (f)(x) — ti—1(x)) The crucial notational conven-
tion is that properties associated with intervals are given the name of the subsurface
below. The A-operator is used for the difference between a property at subsurface [—1
and subsurface [, i.e. associated with layer [. Note that by definition zo(x) = to(x) = 0
for any x.

2.1 Seismic travel times

The seismic travel times, #;(x) are usually collected on a regular grid sometimes as
fine-meshed as 12.5m x25m, so the lateral resolution appears very fine. However, the
measured travel times are an averaged sum of reflections from a considerable area
depending on the depth to the reflector. Thus the travel time map, #;(x), should be
regarded as a smoothed indirect measurement of the depth to the reflector. There



are also physical limits to the vertical resolution of the seismic sound signals due to
strong attenuation of short wavelengths. These two measuring errors are modeled
as a space dependent random field, R}(x), The ‘true’ unsmoothed travel times to
reflector [ is therefore:

(2) Tix) = ti(x) + Ri(x);  xeR"

2.2 Interval velocities

Within a homogeneous layer [ the interval velocity usually varies laterally due to
different average rock density and mineralogy. The lateral trend is a linear model:

(3) Vi) = 3 Afgl(x) + Ri(x);  x€ R

p=1

where A7 are partly known coefficient parameters, g7 (x) are known space dependent
regression functions, and R} (x) is modeled as a Gaussian random field with zero
expectation. The regression functions are typically interval velocities from stacking
velocities or functions of interpreted travel times. The part of Equation (3) excluding
the residual is called the interval velocity trend, and is denoted by the symbol ‘N/I(X)
In the Bayesian approach the coefficient parameters are regarded as multi-Gaussian
distributed random variables. The trained geophysicist should assign prior probabil-
ity distributions to these variables, that is essentially, expectations and variances.

2.3 Depth to subsurfaces

By definition of interval velocity, the thickness of a layer [ outlined by two seismic
reflectors is:

(4) AZi(x) = Vi(x)AT(x) = (Vi(x) + B (x)) (At(x) + AR{(x)) .

The residuals are generally small compared to the trends so a reasonable simplification
is to ignore products of residuals:

AZ(x) & (Vi(x) + R} (x)) Ati(x) + Vi(x) AR}(x).
Reorganizing by using AR!(x) = Ri(x) — R!_,(x), Ri(x) = 0, and AVipq(x) =
(‘N/I(X) — ‘N/H_l (x)) gives the depth to subsurface L:

ZL(X) = IZ: AZ[(X)

= 3 (Vi) + RY()) Al(x) + 3 AV ()R () + Vi (x) Ry ().



The velocity changes, AVi41(x), are usually small compared to Vz(x). Noting that
these velocity changes are multiplied by residuals and using the fact that the sum
of two residuals are dominated by the largest, suggests that simplifying by ignoring
the ‘velocity-change’ terms has minor implications. This simplification reduce the
stochastic model for depth to subsurface L to:

L

(5) Zi(x) = Y (Vilx) + By (x)) Ati(x) + Rj (x).

=1

The time residual is replaced by the depth residual according to Rj (x) = ‘N/L(X)RtL(X).
The depth residual is modeled as a Gaussian random field with expectation zero.

Two important aspects should be recognized from Equation (5): 1) The uncer-
tainty in all interval velocities above subsurface L contributes to the uncertainty in
the depth to subsurface L. 2) The uncertainty in the travel times to a subsurface
above subsurface L does not contribute to the uncertainty in the depth to subsurface
L. This is a consequence of removing the ‘velocity-change’ terms.

A full specification of the stochastic model for the depth to the subsurfaces requires
a full specification of the residual Gaussian random fields and the prior multi-Gaussian
distribution for the coefficient parameters. Independence among different residuals
and the coefficient parameters is assumed:

(6a) Cov{Rj(x), Rj(x")} =0 for I £ ',
(6b) Cov{R}(x), Rj(x")} =0 for I £ ',
(6¢) Cov{Rj(x), Rj(x")} =0 for any [ and /',
(6d) Cov{A],R(x)} =0 for any residual.

The expectations of the residuals are assumed zero everywhere. The variance and
correlation function must be specified for every residual:

(7a) Var{B'(x)} = [o7" ()] forl=1,....L
(7b) Corr{ R (x), R/"(x")} = p/"(x,x')  forl=1,...,L.
Finally consider a vector A containing all P = Y%, P coefficient parameters,

A?. The prior distribution for this multi-Gaussian vector must also be specified in
terms of P expectations, F{A} = p,, and a P x P-dimensional covariance matrix,

Var{A} = Y.
2.4 Unification of depth and velocity models

Standard linear methods are used for predictions. The multi-layer model must there-
fore be formulated as a linear regression model with a spatial dependent Gaussian



residual:
(8) Z(x) = Z_; A fo(x) + R(x) = f(x) - A + R(x).

All P coefficient parameters are organized in the column vector A and the corre-
sponding regression functions are organized in the P-dimensional row vector f(x).
First observe that Equation (5) — the model for depth to subsurfaces — has this
form: the residual is R(x) = S/, R} (x)At)(x) + R;(x), and the sum of regression
functions is: 25:1 A (x)f(x) =8, Zflzl AP (x)Aly(x), where P = Y1, Py is the
total number of coefficient parameters. The interval velocity model, Equation (3),
has exactly the form of Equation (8). The objective however, is to consider depth and
velocity simultaneously so a common regression model must be used. The idea is to
multiply Equation (3) by A#;(x) to obtain a thickness having length units. Note that
this thickness is not the true layer thickness since the depth residuals are ignored.
Once the velocities are ‘transformed’ into thicknesses, a common regression model
for both depths and velocities is possible. Although this is the key to simultaneous
prediction of all subsurfaces and interval velocities, it is mainly a matter of notation.
Details are therefore given in Appendix A.

3 Bayesian kriging

Two different kinds of data are considered: depth observations from every subsurface
and velocity observations from every interval. The number of observations from
subsurface and interval [ is denoted N7 and N} respectively. The lateral locations
of the observations are in principal arbitrary but the position to observations from
vertical wells obviously coincide. The observations are considered exact.

Travel times, ¢;(x), and regression functions, ¢;(x), are assumed known for every
x € R?.

3.1 Posterior distribution for coefficient parameters

A posterior multi-Gaussian distribution for the coefficient parameters in the velocity
models is assessed from a prior distribution and the available depth and velocity
observations.

Consider a column vector, Z, of all the N = S°F (N7 + N}) depth and velocity
observations (rescaled by At), and a vector R of the corresponding N unobserved
residuals: ZT = [Z1(x1),..., Zn(xn)], and RT = [Ri(x1),. .., Ry(xn)], where ‘17 is

used for transposed. In this notation, Equation (8) becomes:
9) Z=FA+R.

The N x P-dimensional ‘design-matrix’ F' is constructed from the known space-
dependent regression functions. Every row corresponds to an observation and every
column corresponds to a particular regression function f,(x).



The prior N x N-dimensional covariance matrix for all the observations are: K, =
Var{Z} = FYoF'T + K, where FYFT is the prior contribution from the trend, and
K is the kriging matrix: K = Var{R}. The Bayesian prediction and prediction
variance for the coefficient parameters are the expectations and the covariances of
the posterior multi-Gaussian distribution given by:

(10) fr, = E{A|Z} = po+ SoF K72 — Fps,)
(11) Yy = Var{A|Z} =Yy — SoFT K1 FY,.

This is a standard result from linear regression analysis found in most textbooks on
Bayesian statistics such as Berger [2].

3.2 Kriging

Define the prior variance of Z(x) at an arbitrary location, say x, and the prior
covariances between Z(x) and the observation vector, Z:

(12) ka(x) = Var{Z(x)} = £(x)Sef7 (x) + k(x)
(13) k.(x) = Cov{Z(x),Z} = FSof(x) + k(x),

where k(x) = Var{R(x)} and k(x) = Cov{R(x),R}. Using these definitions the

Bayesian kriging predictor and the corresponding prediction variance are:

(14) Zi(x) = E{Z(x)|Z} = £(x) - po + k() K7HZ — Fpao)
(15) ok(x) = Var{Z(x)|Z} = k.(x) - k.(x) K7 'k (x).

This result is found in Omre and Halvorsen [3] and in Omre, Halvorsen, and Berteig [4].

4 Example and discussion

Sections 2.2 and 2.3 describes stochastic models for interval velocities and depth to
subsurfaces. Section 2.4 shows how these models can be regarded as a single linear
regression model with a correlated residual which is handled by standard estimation
and prediction techniques as well as Bayesian prediction techniques. This ‘unification’
of the models determines correlations between separate subsurfaces and between sub-
surfaces and interval velocities. Consequences of these dependencies on predictions
obtained by kriging will be illustrated.

4.1 Data

Data is taken from a Norwegian off-shore petroleum reservoir. The data are slightly
manipulated to maintain confidentiality. Two subsurfaces — Top and Base — are
considered.
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Figure 1: Recorded travel times, #;(x), to Top Figure 2: Possible true depth to Top and Base.
and Base. Dashed lines are prior guesses. Depth observa-
tions are shown as small circles.
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Figure 3: Possible true interval velocities. Dashed lines are prior guesses. Velocity observations
are shown as small circles.

Figure 1 shows a 5.5 kilometer long cross-section of the travel time maps in the
west-east direction. Figure 2 shows a cross section of the two subsurfaces. Four wells
— three vertical and one deviating — are indicated by small circles connected by
solid lines. To obtain depths from travel times, interval velocities must be specified.
Figure 3 shows cross-sections of the possible true velocity fields and the six velocity
observations from the vertical wells. Available observations are listed in Table 1.

4.2 Stochastic models

The stochastic model for Top is:

(16) Zrop(X) = Viop(X)l1op(X) + (%)

(17) VTOP(X) = ATop + ATop (tTOP( ) - L 638) + RTop( )

Note that miny{t1op(x)} &~ 1.63s. The two coefficient parameters have simple inter-
pretations: AITOP is the average interval velocity to the crest of the geological structure
and Af,, determines the increase (or decrease) in interval velocity at the flanks. So

A, controls the curvature of the geological structure.
The stochastic model for Base is:

(18)  Zpase(X) = Viop(X)lTop(X) + VBase(X) ({Base(X) — LTop(X)) + Fpase(X)
(19)  Vease(X) = AR + Riaee(x).



Subsurface/ X-coor. Depth Velocity

Well interval (km) (m) (m/s) Table 1: Available observations. Note
1 Top 400.8 3973 1999 that interval velocity observations are
Base 3368 92739 only available in vertical wells.
2 Top 402.3 3293 2007
Base 3436 2903
3 Top 399.6 3433 2070
Base 3580 3254
4 Top 403.2 3335
Base 404.0 3556
Residual o a(m) p
R (%) 4m 1800 Spherical Table 2: Specifications for the Gaussian ran-
RY, p(x) 12m /s 600 Gaussian dom fields. The covariance functions are:
op
Rl oac(X) Sm 2000 Spherical  Cov{R(x), R(x)} = o”p(|x = x'|; a).

Ry (%) 300m/s 600 Gaussian

The stochastic models for Top and Base include four residuals. They are mod-
eled as Gaussian random fields with zero expectation. Table 2 gives the specifi-

cations used in the computations. The spherical correlation function is defined by

3r 1{r 3 : :
p(ria) =1—35% — 2 (g) for r < a and 0 else. The Gaussian (2. order exponential)

correlation function is defined by p(r;a) = exp(—3(r/a)?).
A full specification of the stochastic model requires prior guesses on the coefficient
parameters. The expectations and standard deviations are found in Table 3.

General figure caption. Cross-sections of predicted depths and velocities are
shown in Figures 4 to 8. Predictions, Z*(x), are shown as solid lines and predic-
tion variances, o?(x), are shown as dotted lines of Z*(x) 4 o(x). Well observations
are shown as small circles. Observations from the same well is connected by a solid
line. The horizontal axis are in the west-east direction and spans approximately 5.5
kilometers. The vertical scale are meters and meters per second for depth and velocity
predictions respectively.

4.3 “Traditional” versus proposed method

The traditional approach to predicting the depth to subsurfaces in a layered media
is to start by predicting the uppermost subsurface. Prediction of the second sub-
surface is done by adding the predicted thickness of the intermediate layer to the
uppermost subsurface. Prediction variances are obtained for the first subsurface and
the intermediate layer. The problem however, is to evaluate the prediction variance
for the second subsurface. Simple addition of the two prediction variances would give
the correct answer if the first subsurface and the thickness of the intermediate layer
where uncorrelated. This is not so: the thickness of the intermediate layer between



Traditional method:‘ Proposed method:

3200 ‘ 3200 \ \

3300 | 3300 —|

3400 3400 -

3600 — 3600 -

g —————— Predicted depth ———— Predicted depth

- = — = Error bounds 7/

- = = = Error bounds
3700

\ \ \ \ \ 3700 ‘ ‘
399 400 401 402 403 404 399 400 401 402

T T
403 404

Figure 4: Predicted depth to Top and Base. Notice the failure of the traditional approach at the
deviating well.

Table 3: Expectation u, standard deviation o, and correlations between the coefficient parameters
for 0,1, 2, 3, and 4 wells.

Bayes estimates GLS estimates (universal kriging)
# of wells 0 (prior) 1 2 3 4 2 3 4
# of obs. 0 242 4+4 6+4 8+6 4+4 6+4 8+6
Parameter W 1 o 1 o 1 o 1 o 1 o 1 o 1 o
Al m/s 2000 50 1993 12 1993 10 1997 9 1996 9| 1991 25 1978 14 1987 11

A2 m/s2 1500 750 1493 749 1499 731 2269 625 2402 469| 1701 3609 4050 1169 2992 610
m/s 2500 500 2675 257 2772 195 2864 186 2963 157| 2821 212 2826 208 3000 166

Base
Corr{Air, A?IP} 0 —0.25 —0.49 —0.70 —0.77 —0.94 —0.88 —0.84
Corr{A;, A?} 0 0 0 0.01 -0.02 0 0.20 0.01
Corr{AZ, AL} 0 0 0 -0.16 -0.06 0 -0.30 -0.09

Top and Base is:

AZBase(X) = ZBase(X) — Zrop(X)
= VBase(X) (IBase(X) — 1Top(X)) + Rpase(X) — B (%),

which is (anti-)correlated to Zt,,(x) due to the common residual R, (x). Ignoring
negative correlations causes to large prediction variances. Figure 4 compares the
traditional approach to an approach where all correlations are considered. Both are
produced by Bayesian kriging. The results are almost identical except from at the
right flank. The prediction variance for Base fails to be zero at the well observation.
The very strong intercorrelations between AZpase(x) and Z1op(x) in the vicinity of
the well is ignored in the traditional approach leading to wrong results.

A different, but less dramatic effect, is that the rightmost observation of Base
should have an impact on the prediction of Top. This is obviously not true for the
traditional approach since Top is predicted independently of Base. The proposed
method however, gives a deformation of the prediction for Top directly above the
observation. Notice also a small local reduction in the prediction variance.

4.4 Bayesian kriging

Bayesian kriging is a necessity to obtain reasonable results in some applications; the
lack of well observations in off-shore applications make universal kriging unreliable.
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Figure 5: Predicted depth to Top and Base by Figure 6: Predicted depth to Top and Base by
Bayesian kriging. universal kriging.

Figures 5 and 6 show predictions by Bayesian and universal kriging respectively. The
predictions are conditioned on different numbers of wells.

The difference between Bayesian and universal kriging is the method for obtain-
ing estimates for the coefficient parameters. Both methods use simple kriging for
local adaptions in the vicinity of observations. Table 3 contains Bayesian and GLS
estimates for the coefficient parameters. The estimation of A}, and Ag,, are very
successful even when a single well is used. The reason is that the specified variance
for the residuals are quite small compared to the prior variances for the coefficient
parameters. The acceleration parameter, A%Op, controlling the curvature, is not suc-
cessfully estimated before any of the deep observations in well 3 or 4 are included.
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Figure 7: Bayesian depth predictions for Top.
The trend for predictions with both depth and
velocity data has been subtracted to exaggerate
the local influence of the data.

4.5 Use of velocity information

Depth and velocity observations:
| | | |

Predicted velocity
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Figure 8: Bayesian velocity predictions for in-
terval between Top and Base.

The impact of velocity observations on depth predictions are quite small due to
strong intercorrelations. To visualize this Figure 7 shows depth predictions for Top

conditioned on 1) all observations 2) depth observations alone 3) velocity observations
alone. To exaggerate the variations the predicted trend obtained by using all data
are subtracted from all the predictions. The two upper figures are almost identical
indicating minor influence from velocity observations. Notice especially the ‘hump’
on the right side due to the depth observation of Base below. The reduction in

uncertainty at this location is seen quite clearly. The prediction in the lower figure do
not interpolate the depth observation since it is conditioned on velocity observations

alone.

Figure 8 shows the predicted interval velocity in the layer between Top and Base.



Table 4: Generalized least squares estimates for expectation p, standard deviation o, and correla-
tions of the coefficient parameters for all observations, depth observations, and velocity observations.

GLS estimates (universal kriging)
Observations: Depth+velocity Depth Velocity
# of observations 8+6 8 6
Parameter it (o) it (o) it (o)
AlTOp (m/s) 1987 (11) | 1990  (11) | 1984  (11)
AZTOP (m/s?) 2992 (610) | 2880 (621) | 2915 (638)
Af o (m/s) 3000 (166) | 2975 (204) | 2965 (173)
Corr{AlTop, AzTop} -0.84 —-0.84 —-0.80
Corr{ A, Apaec} 0.01 -0.01 0
Corr{AzTop, A} -0.09 -0.10 0

The influence from the depth observation of Base in the deviating well is seen as a
hump and a small reduction in prediction variance.

Table 4 shows the corresponding estimated coefficient parameters. The more
sensitive GLS estimates are shown. The general observation is that adding velocity
data has minor implications since depth and velocity data are highly correlated.

Note however that Af, .. is determined more precisely using the 3 relevant velocity
observation than the 4 relevant depth observations. The reason is that the 6 velocity
observations splits into two sets of uncorrelated observations while all the depth
observations are strongly correlated.

5 Final remarks

A new method for depth conversion of seismic travel times to L reflecting subsurfaces
has been presented. The method has the following characteristics:

— it is a combination of cokriging with 2L covariables and [ dependent linear
regression models for velocity and depth trends,

— predictions are possible by Bayesian or universal kriging,

— the predicted depths and velocities are conditioned on all observations from the
N subsurfaces and N velocity fields,

— depth predictions interpolate the relevant depth observations, and velocity pre-
dictions interpolate the relevant velocity observations,

— prediction variances for all predictions are available,
— using deviating wells are trivial,

— estimates of coefficient parameters in the velocity models are based on all ob-
servations.

Conditional simulation based on the same model is described in Abrahamsen and
Omre [1]. Simulation is necessary for the assessment of uncertainty in volumetric
predictions.
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A Unified notation for depth to subsurfaces and interval ve-
locities

We intend to show that the regression models:

(20) Vi) = Z_Z;Afgf(@ R (x)
(21) Zu(x) = 3 (Vi(x) + By (%)) Ati(x) + Rj (x)

=1
can be written as a single regression model:
Z(x) =f(x)- A+ R(x).

The exercise is mainly a change in notation.
It will prove convenient to use a new equivalent set of regression functions:

1 (x) = Ati(x)g/ (x).

Multiplying Equation (20) by At;(x) and introducing new regression functions gives:

(22) Vix)AL(x) = éAfff(xHRf(x)Ah(x)
(23) Zufx) = L VIA) + Hifx).

Note that Equation (22) is equivalent to Equation (20) since At;(x) is considered a
known function.



All coefficient, parameters will be organized in a P = 3% P-dimensional column
vector starting with the P, parameters for the first interval and so on:

AT = (Ay,..., Ap)
= ([AlL... AP AL AT,
The square brackets simply emphasize the initial grouping of parameters. The space

dependent regression functions f/(x) are organized accordingly in a P-dimensional
row vector such that the trends can be written

Vix)AL(x) = f(x)- A
Zi(x) = fAx)-A.

The crucial point is to replace all f{(x)’s irrelevant for a certain surface by zeroes:

%) = (0.0 [ (x)..... f{(x)].0,...,0)
) = (A L&) F),0,..,0).

Introducing generic forms:

(21)  Z(x) =

for velocitiesin L — 1 to L

{ L(X); for depth to subsurface L
Vi(x)AtL(x);
B (X), for Z(x) = Z1(x)
e = { P for Z(x) = Vi(x)AUX)
Ri(x) + L, Ry (x)Atr(x);  for Z(x) = Zi(x)
(26)  R(x) :{ RY (x)Al(x); for Z(x) = Vi(x)Ali(x)

X

Using these gives the single regression model
1) Z(x) = £(x) - A + R(x)

for both depths to subsurfaces and velocities. The parameter vector, A, is indepen-
dent of the interpretation of 7, f, and R.

Equation (27) describes Vi(x)At;(x) rather than Vj(x) and the same applies to
the Bayesian kriging equation. This implies that the velocity observations must be
multiplied by At#;(x) when used in the kriging equation. The result — the predicted
surface — must therefore be divided by At#;(x) to obtain the interval velocity field.

For the N observations of the surfaces Equation (27) can be written

(28) 7 =FA+R.

where Z is the N observations organized as a column vector and R is the correspond-
ing unknown residuals. The N x P-dimensional matrix F' contains the corresponding
regression functions. Every row of F' is the P-dimensional f(x) vector for the corre-
sponding observation.





